Carleson Measure Theorems for Large Hardy-orlicz and Bergman-orlicz Spaces
نویسندگان
چکیده
We characterize those measures μ for which the Hardy-Orlicz (resp. weighted Bergman-Orlicz) space HΨ1 (resp. AΨ1 α ) of the unit ball of CN embeds boundedly or compactly into the Orlicz space LΨ2 ( BN ,μ ) (resp. LΨ2 (BN ,μ)), when the defining functions Ψ1 and Ψ2 are growth functions such that L1 ⊂ LΨ j for i, j ∈ {1,2}, and such that Ψ2/Ψ1 is non-decreasing. We apply our result to the characterization of the boundedness and compactness of composition operators from HΨ1 (resp. AΨ1 α ) into HΨ2 (resp. A Ψ2 α ).
منابع مشابه
p-Carleson Measures for a Class of Hardy-Orlicz Spaces
An alternative interpretation of a family of weighted Carleson measures is used to characterize p-Carleson measures for a class of Hardy-Orlicz spaces admitting a nice weak factorization. As an application, we provide with a characterization of symbols of bounded weighted composition operators and Cesàro-type integral operators from these Hardy-Orlicz spaces to some classical holomorphic functi...
متن کاملInterpolation and harmonic majorants in big Hardy-Orlicz spaces
Free interpolation in Hardy spaces is characterized by the well-known Carleson condition. The result extends to Hardy-Orlicz spaces contained in the scale of classical Hardy spaces H, p > 0. For the Smirnov and the Nevanlinna classes, interpolating sequences have been characterized in a recent paper in terms of the existence of harmonic majorants (quasi-bounded in the case of the Smirnov class)...
متن کاملInterpolation and Harmonic Marjorants in Big Hardy-orlicz Spaces
Free interpolation in Hardy spaces is caracterized by the well-known Carleson condition. The result extends to Hardy-Orlicz spaces contained in the scale of classical Hardy spaces H, p > 0. For the Smirnov and the Nevanlinna classes, interpolating sequences have been characterized in a recent paper in terms of the existence of harmonic majorants (quasi-bounded in the case of the Smirnov class)....
متن کاملCompact composition operators on Hardy-Orlicz and weighted Bergman-Orlicz spaces on the ball
Using recent characterizations of the compactness of composition operators on HardyOrlicz and Bergman-Orlicz spaces on the ball ([2, 3]), we first show that a composition operator which is compact on every Hardy-Orlicz (or Bergman-Orlicz) space has to be compact on H∞. Then, although it is well-known that a map whose range is contained in some nice Korányi approach region induces a compact comp...
متن کاملRenormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کامل